FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

1 FIZYKA III MEL Fizyka jądrowa i cząstek elementarnychWy...
Author: Tytus Pieniążek
0 downloads 0 Views

1 FIZYKA III MEL Fizyka jądrowa i cząstek elementarnychWykład 1 – własności jąder atomowych

2

3 Odkrycie jądra atomowegoRutherford (1911) Ernest Rutherford ( ) 1908 R  10 fm

4 rozmiary (w metrach) skala logarytmiczna!Skala przestrzenna 10-20 10-10 100 1010 1020 1030 do Słońca jądro atom Wszechświat Ziemia człowiek rozmiary (w metrach) skala logarytmiczna!

5 Cząstki i oddziaływaniajądra atomowe składniki jąder: protony i neutrony (nukleony) liczne cząstki produkowane w wyniku procesów , w których uczestniczą nukleony lub jądra Oddziaływania: grawitacyjne słabe elektromagnetyczne silne

6 Trzy grupy cząstek elementarnychNośniki oddziaływań: fotony (oddz. elektromagn.) bozony W i Z (oddz. słabe) gluony (oddz. silne) grawitony? (oddz. grawitacyjne) Leptony: elektrony i neutrina elektronowe miony i neutrina mionowe taony i neutrina taonowe Hadrony: nukleony mezony  …. (kilkaset cząstek)

7 Masy obiektów subatomowychMasy wyrażamy w jednostkach energii: Jednostka energii – elektronowolt: 1eV = 1,602  C  V = 1,602  J Jednostka masy: MeV/c2 lub MeV (c = 1) Masy nuklidów wyrażamy w atomowych jednostkach masy u: 1 u = masy obojętnego atomu węgla

8 Kinematyka relatywistycznaenergia całkowita energia spoczynkowa energia kinetyczna energia całkowita energia spoczynkowa pęd

9 Falowe własności materiiDługość fali de Broglie’a: Zasada nieoznaczności:

10 Pustka materii Xe tylko tu...  _  _  _ośrodek ciągły (tu ciekły ksenon) jest prawie pusty!

11 Rozmiar jądra Na jaką odległość może zbliżyć się do jądra cząstka ?większa energia Na jaką odległość może zbliżyć się do jądra cząstka ? Wzór słuszny dla r > R, gdzie R – promień jądra.

12 60o Gdy padająca cząstka  znajdzie się dostatecznie blisko jądra, włącza się oddziaływanie silne – formuła Rutherforda załamuje się. Punkt tego załamania wyznacza rozmiar jądra. d parametr zderzenia

13 Rozmiar jądra Rozmiar jądra: 10-15 m Rozmiar atomu: 10-10 mDla jądra węgla: Ek = 5,1MeV R = 3,410-15m Dla jądra aluminium: Ek = 9,0MeV R = 4,110-15m Rozmiar jądra: 10-15 m Rozmiar atomu: 10-10 m

14 Pustka materii Rozmiar jądra: 10-15 m Rozmiar atomu: 10-10 melektrony km jądro piłka o średnicy 10 cm Rozmiar jądra: 10-15 m Rozmiar atomu: 10-10 m

15 Świat jądrowy Skala gęstości w mikro- i makroświecie:ładunek: q = Ze e = 1.6 · C energia jonizacji atomu wodoru – 13.6 eV energia separacji nukleonu z jądra – 8.5 MeV 10-5 100 105 1010 1015 1020 gęstość [g/cm3] Skala gęstości w mikro- i makroświecie: ciało stałe biały karzeł gwiazda neutronowa materia jądrowa czarna dziura

16 Składniki jądra Ładunek jądra = n·e+Masa jądra około dwukrotnie większa niż masa protonów. Nukleony – protony i neutrony

17 Elektrony w jądrze? Hipoteza: jądro zawiera A protonów i A – Z elektronów zasada nieoznaczoności (masa elektronu  0.5 MeV) więc nie! oraz analiza spinów jąder… np: spin jądra 147N jest całkowity (eksperyment) podczas, gdy suma spinów (połówkowych) 14 protonów i 7 elektronów byłaby połówkowa!

18 Nuklidy X - symbol pierwiastka A - liczba masowa Z - liczba atomowaN - liczba neutronowa

19 ścieżka stabilności + gwiazdy neutronowe

20

21 Jądra superciężkie IUPAC Mendelevium Md 102 Nobelium No 103 Lawrencium Lr 104 Rutherfordium Rf 105 Dubnium Db 106 Seaborgium Sg 107 Bohrium Bh 108 Hassium Hs 109 Meitnerium Mt

22 Stabilne nuklidy N niep. N parz. Z niep. 4 50 54 Z parz. 55 165 220 59274 stabilnych nuklidów Z < 84 od wodoru Z = 1 do bizmutu Z = 83 następny polon Z = 84 jest już nietrwały niestabilne wyjątki: technet Z = 43 oraz promet Z = 61 N niep. N parz. Z niep. 4 50 54 Z parz. 55 165 220 59 215 274

23 Nuklidy nuklidy izotopy izobary izotony izomery wzbudzenie

24 Masy jąder

25 Spektrometr masowy separacja izotopów... selektor prędkościselektor pędu źródło jonów detektor B E separacja izotopów...

26 Aston 1919 Francis Aston 1922 od 1919 zidentyfikował i zmierzył masy 212 izotopów...

27 Defekt masy m – masa jądra mp – masa protonu (938.3 MeV) mn – masa neutronu (939.6 MeV) defekt masy: m c2 = [Z · mp + (A – Z) · mn – m] c2 > 0 energia wiązania: EB = m c2 EB / A  8.5 MeV

28 Defekt masy kolaps jądrowy...