Fundamentos de la Mecánica Cuántica

1 Fundamentos de la Mecánica CuánticaTercera Sesión Funda...
Author: José Luis Martín Franco
0 downloads 2 Views

1 Fundamentos de la Mecánica CuánticaTercera Sesión Fundamentos de la Mecánica Cuántica

2 Fundamentos de Mecánica CuánticaNaturaleza de la radiación electromagnética. Hipótesis de De Broglie. Principio de Incertidumbre. Ecuación de Schrödinger

3 Naturaleza de la radiación electromagnéticaParámetros característicos de las ondas. Espectro electromagnético. Espectros de absorción y de emisión del átomo de Hidrógeno. Radiación de un cuerpo negro. Efecto fotoeléctrico.

4 Ondas

5 Características de las ondasPueden propagar energía a distancia Requieren de un medio para desplazarse Se desplazan en el medio pero no lo desplazan como un todo Sus propiedades (en particular la velocidad) dependen del medio y no de la causa que originó la onda o que la provocó

6 Parámetros característicos de las ondasLongitud de onda () Distancia entre crestas o valles consecutivos en ondas periódicas, o en general entre dos puntos idénticos de la onda Las unidades con que se mide son unidades de longitud: [cm] o [Ǻ]

7 Parámetros característicos de las ondas (2)Frecuencia () Número de longitudes de onda que pasan por un punto en un segundo. Unidades: [s-1] A veces llamadas ciclos por segundo.

8 Una ecuación de las ondas[cm] [s-1]  [cms-1] Velocidad (v) v = 

9 Velocidad Si el medio es muy denso, la onda viaja rápido.Si el medio es poco denso, la onda viaja despacio.

10 Ondas electromagnéticasGeneran su propio medio (un campo electromagnético)

11 Ondas electromagnéticas (2)Por tanto, siempre viajan a la misma velocidad (en el vacío) “c” c = · c es una constante c = 299 792 458 ms-1 c ~ 3 x 1010 cms-1

12 Ondas electromagnéticas (2)Para describir a las ondas electromagnéticas basta con conocer uno de los parámetros ( o ) y la constante de proporcionalidad es c

13 ¿Cuál es la longitud de onda de una onda electromagnética de frecuencia 6.24 x 1013 s-1?

14 Número de onda Inverso de la longitud de onday sus unidades son [cm-1]

15 Espectro electromagnéticoEs una clasificación de las ondas de acuerdo a su frecuencia (o longitud de onda)

16

17

18

19 Región visible

20

21 Compara las radiaciones de radio de frecuencia modulada con las de la luz visible en cuanto a frecuencia, velocidad, longitud de onda y número de onda.

22 Espectros de Absorción y EmisiónGustav Robert Kirchoff (sentado) y Robert Wilhelm Bunsen (parado) Alrededor de 1859

23 Espectroscopio

24 Espectroscopio (Esquema)

25 Espectros de Emisión de los Átomos

26 Espectros de Emisión de los Átomos (2)

27 Espectros de Absorción y Emisión del Átomo de Hidrógeno

28 Los átomos de Bario excitados emiten una radiación de 455 nmLos átomos de Bario excitados emiten una radiación de 455 nm. ¿Cuál es la frecuencia y cuál el color de esa radiación?

29 Radiación de un Cuerpo NegroAntes de 1900, se trataba a la luz como una simple onda electromagnética En las ondas electromagnéticas la energía es proporcional a la amplitud de la onda eléctrica más la amplitud de la onda magnética E  (AE2 + AH2) (intensidad luminosa) 29

30 Radiación de un Cuerpo Negro (2)E  (AE2 + AH2) Nótese que la energía de una onda electromagnética tiene que ver con la intensidad y no con la frecuencia 30

31 Radiación de un Cuerpo Negro (3)Un cuerpo negro es un objeto (ideal) capaz de absorber todas las radiaciones del espectro electromagnético. ¿Cómo simular un cuerpo negro? 31

32 Radiación de un Cuerpo Negro (4)32

33 Radiación de un Cuerpo Negro (5)33

34 Radiación de un Cuerpo Negro (6)34

35 Radiación de un Cuerpo Negro (7)35

36 Max Plank (1858-1947) Premio Nóbel en 1918.En 1900, desechando el Principio de Equipartición de la Energía de la Termodinámica clásica, propuso que la energía era proporcional a la frecuencia de la radiación y ¡no a su intensidad! 36

37 Cuantización de la EnergíaE = h h – constante de Planck h = 6.62 x ergseg 37