1 Model relacyjny
2 Relacyjny model danychRelacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach baz danych. Podstawą tego modelu stała się praca opublikowana przez E.F. Codda w 1970r. W pracy „Relacyjny model logiczny dla dużych banków danych” Codd zaprezentował założenia relacyjnego modelu baz danych, model ten oparł na teorii mnogości i rachunku predykatów pierwszego rzędu.
3 Podstawowe pojęcia Relacja jest podzbiorem iloczynu kartezjańskiego dziedzin A1, A2,..An. Iloczyn kartezjański oznacza się następująco: A1 A2 An Zawiera on n-tki (a1, a2,..an) nazywane krotkami takie, że a1A1, a2 A2,... dn An
4 Podstawowe pojęcia Niech A1 = [a,b,c], A2 =[x,y]Wtedy A1 A2 = {(a,x), (a,y), (b,x), (b,y), (c,x), (c,y)} Przykłady relacji, które są podzbiorami iloczynu kartezjańskiego A1 A2 : X = {(a,x), (b,x), (c,x)} Y = {(a,x), (a,y), (b,y)} Analogicznie jak dla iloczynu kartezjańskiego elementy relacji są nazywane krotkami
5 Baza danych - relacja Rozważmy relację, której atrybutami są nazwisko, imię, wiek. Relację tę można zapisać następująco: PRAC
6 Zasady spełnione dla każdej relacjiKażda relacja w bazie danych ma jednoznaczną nazwę, Każda kolumna w relacji ma jednoznaczną nazwę w ramach jednej relacji, Wszystkie wartości w kolumnie muszą być tego samego typu,
7 Zasady spełnione dla każdej relacjiPorządek kolumn w relacji nie jest istotny, Każdy wiersz w relacji musi być różny, Porządek wierszy nie jest istotny, Każde pole leżące na przecięciu kolumny/wiersza w relacji powinno zawierać wartość atomową
8 Schemat relacji Schematem relacji R o danych atrybutach A1, A2,…, An takiej, że R D1 D2 … Dn nazywamy ciąg (A1, A2,…, An). W celu jawnej specyfikacji schematu relacji R piszemy R(A1, A2,…, An)
9 Reprezentacja tablicowa relacji. . . Aj An e1 e2 . ei em d1,1 d2,1 di,1 dm,1 d1,2 d2,2 d1,j d2,j di,j dm,j D1,n d2,n di,n dm,n
10 Zbiór identyfikujący relacjizbiór atrybutów który jednoznacznie identyfikuje wszystkie krotki w relacji R w żadnej relacji o schemacie R nie mogą istnieć dwie krotki t1 i t2 takie, że t1[S]=t2[S]
11 Zbiór identyfikujący relacji
12 Klucz Minimalny zbiór identyfikującyTaki zbiór atrybutów relacji, których kombinacje wartości jednoznacznie identyfikują każdą krotkę tej relacji a żaden podzbiór tego zbioru nie posiada tej własności W kluczu nie może zawierać się wartość Null
13 Klucz
14 Klucz Klucz jest kluczem prostym, jeżeli powyżej opisany zbiór jest jednoelementowy - w przeciwnym razie mówimy o kluczu złożonym W ogólności, w relacji można wyróżnić wiele kluczy, które nazywamy kluczami potencjalnymi. Wybrany klucz spośród kluczy potencjalnych nazywamy kluczem głównym (Primary Key PK)
15 Zależność funkcjonalnaAtrybut B relacji R jest funkcjonalnie zależny od atrybutu A jeżeli dowolnej wartości a atrybutu A odpowiada nie więcej niż jedna wartość b atrybutu B
16 Zależność funkcjonalna
17 Zależność funkcjonalnaNiech X i Y będą podzbiorami zbioru atrybutów relacji R X{A1...AN}, Y{A1...AN} podzbiór atrybutów Y zależy funkcyjnie od podzbioru atrybutów X, jeżeli nie jest możliwe, by relacja R zawierała dwie krotki mające składowe zgodne tzn. identyczne dla wszystkich atrybutów ze zbioru X i jednocześnie co najmniej jedną niezgodną składową dla atrybutów ze zbioru Y
18 Zależność funkcjonalna
19 Zależność funkcjonalnaZbiór atrybutów Y jest w pełni funkcjonalnie zależny od zbioru atrybutów X w schemacie R, jeżeli: i nie istnieje takie, że
20 Zależność funkcjonalnaZbiór atrybutów Y jest częściowo funkcjonalnie zależny od zbioru atrybutów X w schemacie R, jeżeli: i istnieje takie, że
21 Zależność częściowa i pełna
22 Zależność funkcjonalnaNiech X, Y i Z będą trzema rozłącznymi podzbiorami atrybutów danej relacji Z jest przechodnio funkcjonalnie zależny od X, jeśli Z jest funkcjonalnie zależny od Y i Y jest funkcjonalnie zależny od X natomiast X nie jest zależny od Y i Y nie jest zależny od Z
23 Zależność przechodnia
24 Zależność funkcjonalnaPodzbiór atrybutów Y jest wielowartościowo funkcjonalnie zależny od podzbioru X w schemacie R, jeżeli dla dowolnej relacji r w schemacie R i dla dowolnej pary krotek t1 i t2 z relacji r istnieje taka para krotek że: s1[X]=s2[X]=t1[X]=t2[X] i s1[Y]= t1[Y] i s1[R-X-Y]=t2[R-X-Y] i s2 [Y]= t2[Y] i s2 [R-X-Y]=t1[R-X-Y]
25 Zależność wielowartościowaX Y R-X-Y krotka Nazwisko Imię dziecka Znajomość języków t1 Kot Ania niemiecki t2 Jaś angielski s1 s2 Słoń Ola
26 Zależność wielowartościowat1[X]=t2[X]=s1[X]=s2[X]=(Kot) s1[Y]= t1[Y]=(Ania) i s1[R-X-Y]=t2[R-X-Y]=(angielski) i s2 [Y]= t2[Y]=(Jaś) i s2 [R-X-Y]=t1[R-X-Y]=(niemiecki)
27 Dekompozycja schematuzastępujemy zbiorem (niekoniecznie rozłącznych) schematów relacji takich, że każdy schemat Ri stanowi podzbiór zbioru atrybutów i
28 Dekompozycja schematuW schemacie występuje połączeniowa zależność funkcjonalna wtedy i tylko wtedy gdy istnieje możliwość takiej dekompozycji relacji r na relacje r1, r2,..., rn, że można ją zrekonstruować przy pomocy operacji połączenia
29 Dekompozycja schematupołączeniowa zależność funkcjonalna wynika z zależności atrybutów schematu R od klucza wtedy i tylko wtedy gdy w dowolnej sekwencji połączeń relacji składowych w celu rekonstrukcji relacji r operacja wykonywana jest względem zbioru identyfikującego schematu R