1 Nowe abstrakcje programowania rozproszonegoWykład: Map Reduce Laboratoria: Hadoop Aftowicz Jakub Ciesielczyk Tomasz
2 Big Data Problemy Big Data Animacja 2 – bigdata rośnie.Pytanie do publiczność czy ktoś wie kto wymyślił/opublikował mapreduce Animacja 3 –
3 MapReduce MapReduce Aftowicz Jakub Ciesielczyk Tomasz
4 Motywacje Page Rank – mnożenie dużych macierzy przez wektorPrzeglądanie i przeszukiwanie sieci społecznościowych (facebook – ponad miliard użytkowników). Grafy z miliardem węzłów oraz miliardami (bilionami) krawędzi. Analiza zawartości pobranych stron Tworzenie indeksów odwrotnych
5 Przykład word count Ala ma kota. Ala ma psa. Pies ma Alę. słowo ilość2 Ma 3 Kota 1 Psa Pies Alę słowo ilość Ala Ma Kota Psa Pies Alę
6 Word count – jedna maszynaHashMap
7 Word count – jedna maszynaHashMap
8 Word count – jedna maszynaHashMap
9 Word count – wiele maszynHashMap
10 Word count – wiele maszynSecond step: HashMap
11 Word count – wiele maszynAby procedura mogła zadziałać na grupie maszyn, musimy spełnić następujące funkcjonalności: Składowanie plików (fragmentów danych) na dyskach maszyn (documentSubSet) Zapisywanie dane do tabeli hashowych opartych o dyski twarde tak by nie być ograniczonym pamięcią RAM Podzielenie danych pośrednich (wordCount) z kroku pierwszego. Rozdysponowanie fragmentów danych do odpowiednich maszyn Sprawdzanie poprawności
12 Word count – wiele maszynCo się stanie w przypadku awarii jednej ze stacji roboczych? Co się stanie w przypadku awarii zarządcy? Co się stanie w przypadku natrafienia na wadliwe dane? Jak należy rozproszyć dane? W jaki sposób zebrać wyniki?
13 MapReduce - Założenia Automatyczna dystrybucja danych programista tylko definiuje w jaki sposób odczytywać dane (np. podziel wiersz w pliku po średniku) Automatyczne zrównoleglenie zadań programista tylko pisze co chce zrobić (reducer) Automatyczne zarządzanie zadaniami zrównoleglenie wątków jest transparentne dla programisty
14 MapReduce - Założenia Odporność - implementacja powinna być niewrażliwa na awarię maszyn Automatyczna komunikacja „Load balancing” Skalowalność – skalowalny liniowo poprzez dodawanie kolejnych maszyn Dostępność – użycie na grupie normalnych maszyn (PC), chmura obliczeniowa typu Amazon, Beyond Implementacja mapReduce, nie wiem czy implementacja to dobre stwierdzenie. Dane powinny być przeliczone niezaleznie czy maszyna na ktorej były liczone uległa awarii
15 MapReduce - Idea Map Generowanie pary klucz-wartośćReduce Łączy wartości związane z wcześniej wygenerowanymi kluczami „Dziel i zwyciężaj”
16 MapReduce - Idea Input Output Map Raw data-> (
17
18
19
20 Word count – MapReduce public map ( String filename , String document ) { List
21 Word count – MapReduce public reduce ( String token , List
22 Mnożenie macierzy przez wektorZdefiniujmy macierz M o rozmiarze n x n o elementach mij oraz wektor V o długości n o elementach vj Wynikiem iloczynu M*V jest wektor X o długości n o elementach zdefiniowano: Macierz M jest przechowywana za pomocą trójki liczb (i, j, mij )
23 Mnożenie macierzy przez wektorZałóżmy, że n jest duże, ale nie na tyle, żeby wektor nie zmieścił się w pamięci i jest dostępny w każdym Mapperze
24 Mnożenie macierzy przez wektorMap: Przechowuje cały wektor v i fragment macierzy M. Z każdego elementu mij produkuje parę klucz-wartość component Reduce Sumowanie wszystkich wartości dla danego klucza i (komórka wektora x). Wyjście : Klucz i w mapperze bo muszą trafic do jednej komorki wektora x
25 Mnożenie macierzy przez wektorZałóżmy, że n jest na tyle duże że wektor nie zmieścił się w pamięci Mappera i musi nastąpić jego podział Podzielmy zatem macierz na pionowe fragmenty o jednakowej szerokości, a następnie wektor na jednakową ilość poziomych fragmentów i-ty fragment macierzy będzie mnożony jedyni z elementami z i-tego fragmentu wektora
26 Mnożenie macierzy przez wektor
27 Mnożenie macierzy przez wektorMap: Przechowuje fragment wektora v i macierzy M. Z każdego elementu mij produkuje parę klucz-wartość component Reduce Sumowanie wszystkich wartości dla danego klucza i (komórka wektora x). Wyjście : Klucz i w mapperze bo muszą trafic do jednej komorki wektora x
28 Korzyści… Umożliwia programistom bez doświadczenia z dziedziny systemów równoległych i rozproszonych, korzystanie z zasobów dużego systemu rozproszonego Ukrywa „niechlujne” szczegóły zrównoleglenia, obsługi błędów, rozproszenie danych i równoważenie obciążenia w bibliotece.
29 Awaria workera Master periodycznie pinguje każdego workeraMaster oznacza wadliwego workera Wszystkie zadania Mapowania zlecone do tej pory danemu workerowi przywracane są do stanu Idle Wyniki przechowywane są lokalnie na maszynie która uległa awarii Ukończone zadania typu Reduce nie muszą być powtarzane Wyniki zadań Reduce przechowywane są w GFS
30 Awaria workera Kiedy zadanie Map zostaje przeniesione z workera A do B wszyscy workerzy wykonujący zadania typu Reduce zostają powiadomieni o zmianie Powtórne wykonanie podstawowym mechanizmem obsługi błędów MapReduce jest odporne na awarie wielu stacji roboczych naraz, przenosząc obliczenia na działające maszyny i kontynuąjąc przetwarzanie
31 Awaria Mastera Master może wykonywać CheckpointyPo awarii nowa kopia Mastera może wystartować z ostatniego Checkpointu Jednak przy posiadaniu tylko jednego Mastera sznasa jego awarii jest niewielka… … dlatego implementacje przerywają przetwarzanie w przypadku awarii mastera
32 Ciekawostki i zaleceniaProblem „Maruderów” Wykonania „Pojedynczych” zadań się przeciągają Backup Tasks Do 44% wzrost czasu wykonania Problem „Złych Rekordów” Błędy w kodzie użytkownika powodujące awarie w wyniku przetwarzania pewnych danych Błędy w zewnętrznych bibliotekach Czasami dopuszczalne jest pominięcie niektórych rekordów
33 Ciekawostki i zaleceniaPartycjonowanie Domyślne (hash(key) mod R) Użytkownika Np. grupowanie po URL (hash(Hostname(urlkey)) mod R) Zasoby na jednym serwerze odpytywane przez jednego workera korzystamy z usprawnień protokołu HTTP i HTTPS Sortowanie (TeraSort)
34 Ciekawostki i zaleceniaCombiner Kierowanie danych w paczkach do Reducerów Z reguły powiela kod Reducera Potrafi znacząco przyspieszyć rozwiązywani niektórych problemów MapReduce Np. word count wiele
35 MapReduce: koszt i problemyWąskim gardłem dla MapReduce jest komunikacja danych po sieci Ilość zadań powinna być dużo większa od ilości workerów
36 MapReduce koszt i problemyDla maksymalnego zrównoleglenia mappery i reducery powinny być stateless, nie powinny zależeć od żadnych danych w obrębie zadania MapReduce. Nie jest możliwym sterowania porządkiem wykonywania zadań map i reduce. Faza reduce nie jest wykonywana przed zakończeniem fazy map Zakłada się, że wynik reducera jest mniejszy od wejścia mappera
37 MapReduce: koszt i problemyCzy MapReduce/Hadoop rozwiąże moje problemy? tak, jeśli umiesz przekształcić algorytm do postać Map-Reduce „It is not a silver bullet to all the problems of scale, just a good technique to work on large sets of data when you can work on small pieces of that dataset in parallel „
38 SQL a MapReduce R,S – relacje (tabele) t, t’ : krotkis – warunek selekcji A, B, C – podzbiór atrybutów a, b, c – wartości atrybutów dla danego podzbioru atrybutów
39 Selekcja Map Dla każdej krotki t w R sprawdź czy spełnia warunek selekcji s. Jeśli spełnia to produkuj parę klucz wartość: (t, t) Reduce Po prostu przekazuje dane na wyjście
40 Projekcja Map Dla każdej krotki t w R wyprodukuj krotkę t’ poprzez wyeliminowanie atrybutów spoza zbioru A. Wyjście (t,t’) Reduce Dla każdego klucza może być wiele krotek t’. Wejście (t’,[t’,…t’]). Wyjście: dla każdej krotki t’ wyprodukuj (t’,t’)
41 Suma (Union) Map wyjście: (t’,t’) dla każdej z relacji S i R ReduceDla każdego klucza t wyprodukuj (t,t)
42 Różnica Map Dla krotki t z relacji R wyprodukuj (t, name(R)). Dla krotki t z relacji S: (t, name(S)) Reduce Dla każdego klucza t : -jeśli lista wartości zawiera tylko name(R) to wyporodukuj (t, t) -jeśli lista wartości zawiera: [name(R), name(S)] lub [name(s)] lub [name(S), name(R)] nie produkuj nic
43 Przecięcie Map: dla każdej R lub S wyprodukuj (t, t) ReduceJeżeli klucz t ma parę wartości to wyprodukuj (t, t). W Przeciwnym wypadku nie produkuj nic
44 Natural Join Map dla każdej krotki (a, b) z R wyprodukuj (b,[name(R),a]). Dla każdej krotki (b, c) z S wyprodukuj (b,[name(S),c]) Reduce klucz b zawiązany jest z wartościami: [name(R),a] i [name(S),c]. Wygeneruj wszystkie możliwe pary: (b,a1,c1), (b,a2,c1), … , (b,an,cn).
45 Grupowanie i AgregacjaMap Dana relacja R (A,B,C). Aby pogrupować ją po atrybucie A i zagregować po atrybucie B wyprodukuj parę (a,b) Reduce wejście: (a,[b1,b2 …]). Dla listy wartości przeprowadź funkcje agregacji, np. suma. Wyprodukuj parę (a, x) gdzie x to suma wszystkich wartości dla klucza a
46 Hadoop Aftowicz Jakub Ciesielczyk Tomasz
47 Hadoop Implementacja OpenSource MapReducePracuje w architekturze master/slave dla rozproszonych danych oraz rozproszonych obliczeń Uruchomienie Hadoopa wiąże się z uruchomieniem szeregiem różnych usług na serwerach dostępnych w sieci: NameNode, DataNode, Secondary NameNode, JobTracker, TaskTracker
48 Hadoop
49 Hadoop - NameNode Zarządza Hadoop File System (HDFS), kieruje niskopoziomowymi operacjami we/wyj na DataNode Śledzi podział danych (plików) na bloki, wie gdzie te bloki się znajdują NameNode zazwyczaj nie przechowuje żadnych danych oraz nie robi żadnych obliczeń dla procesu MapReduce W przypadku awarii NameNode HDFS nie działa. Można opcjonalnie użyć SecondaryNameNode
50 Hadoop – Secondary NameNodeOdpowiada za monitorowanie stanu HDFS Każda grupa komputerów/klaster? (cluster) ma jeden Secondary NameNode, który znajduje się na osobnej maszynie Różni się od NameNode tym że nie dostaje ani nie rejestruje żadnych danych w czasie rzeczywistym od HDFS. W zamian za to komunikuje się z NameNode, żeby zapisać stan HDFS (snapshot). Częstotliwość zapisu jest determinowana przez ustawienia klastra.
51 Hadoop – Job Tracker Łączy aplikację użytkownika z HadoopemJak tylko kod jest dostarczony do klastra, JobTracker planuje wykonanie poprzez wybór plików do przetwarzania, przydziela różne zadania do węzłów. Monitoruje wykonywujące się zadania. W przypadku awarii JobTracker przydziela zadanie do innego węzła. Jest tylko jeden JobTracker na klaster Hadoopa Kiedy zadanie zostanie skończone przez maszynę, JobTracker aktualizuje status Jeśli padnie, wszystkie zadania zostają zatrzymane
52 Hadoop - DataNode Każda maszyna slave robi podstawowe zadania związane z HDFS: czytanie i pisanie bloków HDFS na lokalny system Nie ma replikacji danych w obrębie jednego DataNode DataNode może komunikować się z innymi DataNodami w celu replikowania bloków danych DataNodes ciągle informują NameNode o blokach danych, które aktualnie posiadają Aplikacja użytkownika może bezpośrednio odwoływać się do DataNode
53 Hadoop – Task Tracker TaskTrackers zarządza wykonywanie pojedynczego zadania na maszynie slave Pomimo, że jest tylko jeden TaskTracker na jeden węzeł to może stworzyć wiele JVM dla obsługi wielu mapperów czy reducerów równolegle TaskTracker cały czas komunikuje się JobTrackerem Jeśli JobTracker nie odbierze sygnału ‘hearbeat’ od TaskTrackera przez określony przedział czasowy to zakładana jest awaria maszyny slave i zadanie zostaje przekazane do innej maszyny
54 Plan laboratorium WordCountProste działania (średnie, sumy) na zbiorach danych Zapytania SQL Selection Group by Order by Natural join
55 WC w hadoopie public class WordCount extends Configured implements Tool{ public static class MapClass extends MapReduceBase implements Mapper
56 WC w hadoopie public static class Reduce extends MapReduceBase implements Text, IntWriteable, Text, IntWriteable> { public void reduce (Text key, Iterator
57 Pytania? ?
58 Dziękujemy za uwagę i zapraszamy na zajęcia laboratoryjne
59 Materiały https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf