1 Obliczenia naukowe i metody numerycznePrzykłady pojawiania się błędów będących konsekwencją używania liczb maszynowych
2 Wykres funkcji f(x) = x4- 4x3 + 6x2 - 4x + 1 Przedział (-9,0; 11,0)
3 Przedział (- 4,0 ; 6,0)
4 Porównanie kształtów przeskalowanych wykresów: niebieski (-9,0; 11,0); żółty (- 4,0 ; 6,0)
5 Przedział (0,9; 1,1)
6 Przedział (0,99; 1,01)
7 Porównanie kształtów przeskalowanych wykresów: czarny (0,9; 1,1); czerwony (0,99; 1,01)
8 Porównanie kształtów przeskalowanych wykresów: niebieski (-9; 11); czerwony (0,99; 1,01)
9 Wykres funkcji f(x) = x4- 4x3 + 6x2 - 4x + 1 w przedziale (0,999 999 904; 1,000 000 177)
10 Wykres funkcji f(x) = x4- 4x3 + 6x2 - 4x + 1 w przedziale (0,999 999 872; 1,000 000 144)
11 Przedział (0, ; 1, )
12
13 Przedział (0, ; 1, )
14 Błędy obliczeniowe - przy wartościach bliskich zeruBadanie ciągu postaci a(n) = [1+ 1/(n+1)]^(n+1) - [1+ 1/n]^n w programie EXCEL Ciąg ten jest ciągiem malejącym, jednak dla dalekich wyrazów np. n > błędy w obliczeniach zaburzają monotoniczność
15 500 wyrazów, od do
16 500 wyrazów, od do 20499
17 500 wyrazów, od do
18 500 wyrazów, od do
19 znak (mantysa)* 2^(cecha)Liczby maszynowe znak (mantysa)* 2^(cecha)
20 Liczby maszynowe (4 bity-mantysa, 3 bity cecha)Liczby maszynowe (4 bity-mantysa, 3 bity cecha). Dolny wykres w skali logarytmicznej
21 Liczby maszynowe (4 bity-mantysa, 3 bity cecha)Liczby maszynowe (4 bity-mantysa, 3 bity cecha). Dolny wykres w skali logarytmicznej
22 Liczby maszynowe (3 bity-mantysa, 4bity cecha)Liczby maszynowe (3 bity-mantysa, 4bity cecha). Dolny wykres w skali logarytmicznej
23 Liczby maszynowe (3 bity-mantysa, 4bity cecha)Liczby maszynowe (3 bity-mantysa, 4bity cecha). Dolny wykres w skali logarytmicznej
24 Liczby maszynowe (3 bity-mantysa, 4bity cecha) Liczby maszynowe (4 bity-mantysa, 3 bity cecha).
25 Liczby maszynowe (3 bity-mantysa, 4bity cecha) Liczby maszynowe (4 bity-mantysa, 3 bity cecha) skala logarytmiczna