Po co nam prądy sinusoidalne?

1 Po co nam prądy sinusoidalne?1 Przebieg sinusoidalny Po...
Author: Halina Muszyńska
0 downloads 3 Views

1 Po co nam prądy sinusoidalne?1 Przebieg sinusoidalny Po co nam prądy sinusoidalne? W praktyce spotyka się zarówno napięcia stałe (np. 1,5 V baterii, 5 V zasilacza, 12 V akumulatora) jak i sinusoidalne (np. 230 V w gniazdku instalacji sieciowej). Prądy sinusoidalne są łatwo wytwarzane przez generatory z elementami wirującymi. Prądy sinusoidalne można transformować na wyższe i niższe napięcia za pomocą transformatorów. © dr hab. Inż. Paweł Jabłońs

2 Prąd sinusoidalny Najogólniejszy prąd sinusoidalny ma postać gdzie:i – wartość chwilowa, Im – wartość maksymalna (amplituda), T – okres, α – kąt fazowy. Wartości i(t) zmieniają się w czasie sinusoidalnie. Wartości i(t) powtarzają się po upływie okresu T. t T Im –Im ωt −α i(t)

3 Prąd sinusoidalny i t

4 Częstotliwość Odwrotność okresu nazywamy częstotliwościąJednostką częstotliwości jest Hz (herc, 1/s). Liczbowo częstotliwość jest równa ilości okresów w jednej sekundzie. Na przykład, 50 Hz oznacza, że wszystkie wartości funkcji powtarzają się kolejno 50 razy w ciągu sekundy.

5 Pulsacja Bardzo często używa się terminu pulsacja. Jest to częstotliwość pomnożona przez kąt pełny Jednostką pulsacji jest rad/s. Zapis funkcji sinusoidalnej jest wtedy bardziej zwięzły:

6 Skutki cieplne W celu oceny skutku cieplnego przepływu prądu okresowego i(t) zauważmy, że prąd stały I płynąc przez rezystor o rezystancji R przez czas t wydziela energię cieplną w ilości Dowolny prąd i wydzieli w „niewielkim” czasie Δt energię Przechodząc do infinitezymalnego przedziału czasu, dostaniemy Po scałkowaniu za okres otrzymujemy

7 Wartość skuteczna Zastępczy prąd stały I wywołujący takie same skutki cieplne jak prąd okresowy i nazywamy wartością skuteczną przebiegu okresowego i. Z określenia tego otrzymujemy równanie a stąd wartość skuteczna wynosi t i i2 Dla sinusoidy

8 Pomiar prądu sinusoidalnegoCo wskaże amperomierz w przypadku prądu sinusoidalnego? Wartość maksymalną? Skuteczną? Wartości chwilowe? Zero? W większości mierników będzie to wartość skuteczna. Niektóre mierniki wskazują wartość średnią (dla prądu sinusoidalnego będzie to zero).

9 Parametry przebiegu sinusoidalnegoIm – wartość maksymalna (amplituda), i – wartość chwilowa, I – wartość skuteczna, T – okres, f – częstotliwość, ω – pulsacja, α – kąt fazowy.

10 Sinusoida – interpretacja geometryczna2 Wskazy Sinusoida – interpretacja geometryczna Z zależności na prąd sinusoidalny mamy Wartość chwilowa i(t) jest rzutem na oś Oy odcinka o długości Im wychodzącego z początku układu współrzędnych pod kątem ωt + α do osi Ox.

11 Wirujący wskaz Wraz z upływem czasu odcinek ten wiruje wokół początku układu współrzędnych. Ten wirujący odcinek nazywać będziemy wirującym wskazem przebiegu sinusoidalnego. Sinusoida jest w pełni określona przez jej wirujący wskaz.

12 Suma sinusoid i ich wskazyRozpatrzmy sumę dwóch sinusoid: Wypadkowa funkcja też jest sinusoidą. Każda z tych trzech sinusoid ma swój wirujący wskaz. Mimo wirowania, wskazy zachowują względem siebie ustalone położenie. i1(t) = Im1sin(ωt + α) i2(t) = Im2sin(ωt + β) i1(t) + i2(t) = Imsin(ωt + γ) Wniosek: zamiast wirujących wskazów można rozpatrywać ich „fotografię” w pewnej chwili, tzn. wskazy nieruchome.

13 Wskaz wielkości sinusoidalnejKażdemu przebiegowi sinusoidalnemu przyporządkowujemy wskaz. Długość wskazu jest równa amplitudzie Im lub wartości skutecznej I. Wskaz rysujemy pod kątem równym kątowi fazowemu α sinusoidy (względem osi odniesienia – zwykle jest to oś pozioma). ωt i –α Im I α I

14 Dodawanie wskazów Aby dodać dwie sinusoidy o wartościach skutecznych I1 i I2 oraz kątach fazowych α i β, korzystamy z konstrukcji graficznej dla ich wskazów. Rysujemy wskazy obydwu sinusoid. Wskaz ich sumy powstaje jako geometryczna (wektorowa) suma wskazów I1 i I2. i1(t) = Im1sin(ωt + α) i2(t) = Im2sin(ωt + β) i1(t) + i2(t) = Imsin(ωt + γ) I γ I2 β I1 α

15 Dodawanie wskazów – wnioskiZ konstrukcji tej otrzymujemy: Wnioski: w ogólności I ≠ I1 + I2. Wolno dodawać tylko wskazy, a nie wartości skuteczne. Przebiegi sinusoidalne wygodnie sumuje się za pomocą wskazów. i1(t) = Im1sin(ωt + α) i2(t) = Im2sin(ωt + β) i1(t) + i2(t) = Imsin(ωt + γ) I2sin(β−α) I2 I β–α I2cos(β−α) β γ I1 α

16 Elementy obwodu prądu sinusoidalnego3 Elementy RLC Elementy obwodu prądu sinusoidalnego Typowy obwód prądu sinusoidalnego zawiera: Rezystory (element pasywny czynny), Cewki (element pasywny bierny), Kondensatory (element pasywny bierny), Elementy źródłowe, tj. źródła napięcia i prądu sinusoidalnego (elementy aktywne).

17 Źródło napięcia i źródło prąduŹródła napięcia zmiennego będziemy oznaczać tak jak stałego, lecz bez symboli „+” i „−”. Strzałka napięcia sinusoidalnego wskazuje wyższy potencjał dla dodatnich chwilowych wartości napięcia. Strzałka prądu sinusoidalnego wskazuje kierunek ruchu ładunków dodatnich dla dodatnich wartości chwilowych prądu.

18 Rezystor Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla rezystora liniowego zachodzi zależność Jeżeli to Wniosek: prąd i napięcie rezystora są w fazie. u i R t u i

19 Rezystor dla prądu sinusoidalnegoPrąd i napięcie są w fazie, tzn. mają ten sam kąt fazowy. Wskazy prądu i napięcia są równoległe. u i R t u i I α U ω

20 Cewka Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla cewki liniowej zachodzi zależność Jeżeli to Wniosek: napięcie wyprzedza prąd o 90°. u i L t u i

21 Cewka dla prądu sinusoidalnegoPrąd spóźnia się za napięciem o 90°, czyli napięcie wyprzedza prąd o 90°. Wskazy napięcia i prądu są prostopadłe, przy czym wskaz prądu spóźnia się za wskazem napięcia o 90°. u i L t u i I α U ω

22 Reaktancja indukcyjnaWielkość nazywamy reaktancją indukcyjną albo oporem biernym indukcyjnym. Reaktancję wyraża się w omach. Zależność pomiędzy wartościami skutecznymi prądu i napięcia na cewce ma postać (prawo Ohma dla cewki) Często zamiast indukcyjności L podaje się reaktancję XL.

23 Reaktancja indukcyjna a częstotliwośćReaktancja indukcyjna zależy od częstotliwości prądu płynącego przez cewkę. im większa częstotliwość tym większa reaktancja cewki (tym większy opór stawia), dla prądu stałego (ω = 0) cewka stanowi zwarcie, gdyż wtedy XL = 0, dla bardzo dużych częstotliwości cewka stanowi praktycznie przerwę (wykorzystuje się to do tłumienia prądów o dużych częstotliwościach). ω XL

24 Kondensator Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla kondensatora liniowego Jeżeli to Wniosek: napięcie spóźnia się za prądem o 90°. u i C t u i

25 Kondensator dla prądu sinusoidalnegoC Prąd wyprzedza napięcie o 90°, czyli napięcie spóźnia się za prądem o 90°. Wskazy napięcia i prądu są prostopadłe, przy czym wskaz prądu wyprzedza wskaz napięcia o 90°. t u i I α U ω

26 Reaktancja pojemnościowaWielkość nazywamy reaktancją pojemnościową albo oporem biernym pojemnościowym. Reaktancję wyraża się w omach. Zależność pomiędzy wartościami skutecznymi prądu i napięcia ma postać (prawo Ohma dla kondensatora) Często zamiast pojemności C podaje się reaktancję XC.

27 Reaktancja poj. a częstotliwośćReaktancja pojemnościowa zależy od częstotliwości napięcia na zaciskach kondensatora. im większa częstotliwość tym mniejsza reaktancja kondensatora (tym mniejszy opór stawia), dla prądu stałego (ω = 0) kondensator stanowi przerwę, gdyż wtedy XC = ∞, dla bardzo małych częstotliwości kondensator stanowi praktycznie przerwę (wykorzystuje się to do tłumienia napięć o małych częstotliwościach). ω XC

28 Elementy RLC – podsumowanie

29 Reguła CIUL W przyswojeniu co za czym się spóźnia, jeśli chodzi o cewkę i kondensator, pomocna może być reguła mnemotechniczna zwana CIUL. Czytając pierwsze trzy litery od początku: dla C mamy I potem U, Czytając ostatnie trzy litery od końca: dla L mamy U potem I. Czytając całość od początku: … teraz już chyba zapamiętacie!

30 Prąd i napięcie sinusoidalne4 Impedancja Prąd i napięcie sinusoidalne Jeżeli przez liniowy dwójnik płynie prąd sinusoidalny, to napięcie na jego zaciskach jest również sinusoidalne. W ogólności dla dowolnego dwójnika liniowego mamy Dla każdego takiego dwójnika możemy narysować wykres wskazowy. Wykres ten w pełni określa wartości chwilowe prądu i napięcia. Dwójnik i u I α U β ω

31 Moduł impedancji Modułem impedancji dwójnika pasywnego (lub niezbyt precyzyjnie – impedancją), nazywamy iloraz wartości skutecznej napięcia do wartości skutecznej prądu Jest to uogólnienie pojęcia rezystancji na przypadek prądów sinusoidalnych. Jednostką impedancji jest 1 om (1 Ω), czyli tak jak rezystancji. Dwójnik pasywny i u I α U β ω

32 Kąt fazowy dwójnika (odbiornika)Kątem fazowym dwójnika nazywamy różnicę pomiędzy kątami fazowymi napięcia i prądu Kąt fazowy jest kątem pomiędzy wskazami napięcia i prądu. Kąt fazowy dwójnika pasywnego zawiera się od −90° do 90°. Kąt ten jest dodatni, gdy napięcie wyprzedza prąd, zaś ujemny, gdy napięcie spóźnia się za prądem. Dwójnik pasywny i u φ = β – α I α U β ω

33 Prąd, napięcie, impedancja i kąt fazowyJeżeli dwójnik pasywny o danym module impedancji Z i kącie fazowym φ zasilimy napięciem sinusoidalnym to popłynie prąd Z, φ i u φ = β – α I α U β ω

34 Elementy RLC – impedancjaU 90° I U −90° I U

35 Susceptancja Odwrotność reaktancji nazywa się susceptancjąJednostką susceptancji jest 1 simens (1 S).

36 Admitancja Modułem admitancji nazywamy odwrotność modułu impedancjiJest to uogólnienie pojęcia konduktancji. Jednostką admitancji jest 1 simens (1 S).

37 Elementy RLC – podsumowanie90° I U −90° I U

38 Nowe pojęcia Wielkości omowe: Wielkości simensowe:Rezystancja R (resistere – opierać się), opór czynny - opór stawiany prądowi przez rezystor, Reaktancja X (reagere – reagować), opór bierny – opór stawiany prądowi przez cewkę lub kondensator. Impedancja Z (impedere – zawadzać), opór pozorny – opór wypadkowy stawiany przez dwójnik pasywny. Wielkości simensowe: Konduktancja G (conducere – prowadzić, przewodzić), przewodność czynna – odwrotność rezystancji. Susceptancja B (suscipere – popierać), przewodność bierna – odwrotność reaktancji. Admitancja Y (admittere – pospieszać), przewodność pozorna – odwrotność impedancji.

39 Impedancja i kąt fazowyDwójnik i u Każdy dwójnik pasywny charakteryzuje się: modułem impedancji Z = U/I, kątem fazowym φ. Moduł impedancji jest nieujemną liczbą rzeczywistą. Kąt fazowy przyjmuje wartości z zakresu od −90° do +90°. Wartości te są niezależne od wartości skutecznej prądu i napięcia dwójnika, ale zależą od częstotliwości. Wartości te są określone jedynie dla przebiegów sinusoidalnych. φ I U

40 Trójkąt impedancji Narysujemy trójkąt prostokątny o kącie φ i przeciwprostokątnej Z. Przyprostokątne wyrażają się wzorami oraz zachodzą związki. Jest to tzw. trójkąt impedancji. Każdy dwójnik pasywny charakteryzuje się zatem pewną rezystancją R i reaktancją X. Dwójnik Z, φ R X Z φ

41 5 Szeregowe gałęzi RL i RC Metoda klasyczna Za pomocą wskazów można rozwiązywać proste obwodu prądu sinusoidalnego. Metoda taka nazywa się klasyczną. Polega ona na budowaniu wykresu wskazowego w oparciu o zależności wiążące prąd i napięcie na poszczególnych elementach.

42 Przykład – szeregowa gałąź RLCRozważmy szeregową gałąź RLC zasilaną napięciem Rysujemy obwód dla wartości skutecznych. Załóżmy, że znamy prąd I. Napięcia na elementach (wartości skuteczne) są równe Czy U = UR + UL + UC? NIE – nie wolno dodawać wartości skutecznych! Wolno dodawać wartości chwilowe (u = uR + uL + uC), co odpowiada dodawaniu geometrycznemu wskazów. u i uR uL R uC C L U I UR UL R XL UC XC

43 Szeregowa gałąź RLC – wykresU I UR UL R XL UC XC Dowolnie zaznaczamy wskaz prądu I. W fazie z nim zaznaczamy wskaz napięcia na rezystorze UR. Napięcie na cewce wyprzedza prąd o 90°, więc wskaz UL zaznaczamy jako obrócony o +90° względem prądu. Napięcie na kondensatorze spóźnia się za prądem o 90°, więc wskaz UC zaznaczamy jako obrócony o −90° względem prądu. Suma wskazów UR, UL i UC daje wskaz napięcia zasilania U. Pomiędzy wskazami U i I zaznaczamy kąt fazowy φ. UL U φ UR I UC

44 Szeregowa gałąź RLC – impedancjaZ wykresu Stąd moduł impedancji Kąt fazowy U I UR UL R XL UC XC I UR φ U UC UL UL – UC

45 Wartości chwilowe u i uR uL R uC C Skoro to Ponadto I UR φ U UC UL

46 A bez wykresu wskazowegoOczywiście moglibyśmy nie używać wykresów wskazowych, tylko napisać ogólne równanie wynikające z drugiego prawa Kirchhoffa Ponieważ to dostajemy Jest to równanie różniczkowo-całkowe dla i(t). Można je rozwiązać bez wykresu wskazowego, ale metoda z wykresem jest znacznie szybsza i łatwiejsza. Na tym polega jej użyteczność. u i uR uL R uC C

47 Wnioski Obwody prądu sinusoidalnego rozwiązujemy za pomocą wykresów wskazowych. Dzięki temu unika się rozwiązywania równań różniczkowych. Nie wolno sumować wartości skutecznych – sumować należy tylko wskazy. Mówimy, że napięcia w oczku oraz prądu w węźle sumuje się geometrycznie. Wykresy wskazowe konstruuje się w ten sposób, aby: Wskazy napięcie i prądu rezystora były w fazie, Wskaz prądu cewki spóźniał się za wskazem napięcia na niej o 90°, Wskaz prądu kondensatora wyprzedzał wskaz napięcia na nim o 90°.

48 Podsumowanie Czego się nauczyliśmy? Przypomnieliśmy parametry przebiegu sinusoidalnego. Poznaliśmy wskazy i ich związek z wartością chwilową sinusoidalną. Omówiliśmy właściwości elementów R, L i C w odniesieniu do prądów sinusoidalnych. Wprowadziliśmy pojęcie impedancji, reaktancji i podobnych. Pokazaliśmy sposób rozwiązywania obwodu za pomocą wykresu wskazowego.

49 Prąd przemienny (AC - ang. alternating current)Charakterystyczny przypadek prądu elektrycznego okresowo zmiennego, w którym wartości chwilowe podlegają zmianom w powtarzalny, okresowy sposób. Wartości chwilowe natężenia prądu przemiennego przyjmują naprzemiennie wartości dodatnie i ujemne (stąd nazwa przemienny). Najczęściej pożądanym jest, aby wartość średnia całookresowa wynosiła zero. Stosunkowo największe znaczenie praktyczne mają prąd i napięcie o przebiegu sinusoidalnym. Dlatego też, w żargonie technicznym często nazwa prąd przemienny oznacza po prostu prąd sinusoidalny. Jeśli zakłócenia lub nieliniowość powodują zdeformowanie sinusoidalnego kształtu, wówczas taki niesinusoidalny przebieg nosi nazwę przebiegu odkształconego.

50 Wartość przebiegu czasowego w dowolnym punkcie (chwili) czasuWartość przebiegu czasowego w dowolnym punkcie (chwili) czasu. Każdy rzeczywisty przebieg czasowy składa się z nieskończonej ilości następujących po sobie wartości chwilowych, których chronologiczne ułożenie powoduje powstanie całego przebiegu czasowego. Wartości chwilowe zapisuje się zazwyczaj małą literą. Na przykład symbolem napięcia elektrycznego jest litera U, natomiast napięcie chwilowe (jako funkcja czasu) zapisuje się jako u(t). Największa wartość chwilowa danego przebiegu jest tożsama z wartością maksymalną; podobnie najmniejsza wartość chwilowa jest równoznaczna z wartością minimalną.

51 Wartość średnia Up Dla sinusa:Wartość średnia przebiegu czasowego może być definiowana na dwa sposoby: 1. Wartość średnia, Wm, zwana również wartością całookresową:                                                                                        gdzie: T - okres przebiegu, t0 - czas początkowy, w(t) - wartości chwilowe przebiegu, t - czas. Dla sinusa: Up 2. Wartość średnia z wartości bezwzględnej, We, zwana również wartością półokresową:                                                                                          

52 Reaktancja X (opór bierny)Reaktancja cewki (opór indukcyjny) ma znak dodatni i oblicza się ją ze wzoru: XL = jωL gdzie L to indukcyjność własna cewki, ω pulsacja, j - jednostka urojona. Reaktancja kondensatora (opór pojemnościowy) ma znak ujemny i oblicza się ją ze wzoru:                                      gdzie: C - pojemność kondensatora, ω - pulsacja, j - jednostka urojona. W obwodach prądu przemiennego rezystancja jest odpowiedzialna za rozpraszanie mocy czynnej, ale dodatkowo występują elementy, które mogą pobierać, magazynować i oddawać energię elektryczną. Dowolny odbiornik nie jest więc już charakteryzowany tylko mocą czynną rozpraszaną na rezystancji R, ale również mocą bierną pobieraną i oddawaną przez reaktancję X (opór bierny)

53 Impedancja (moduł impedancji)Impedancja Z elementu obwodu prądu przemiennego jest definiowana jako                                gdzie: Vr - to napięcie, a Ir-natężenie prądu przemiennego. Jest wypadkową oporu czynnego (R) i biernego (X). Admitancja to odwrotność impedancji, całkowita przewodność elektryczna w obwodach prądu przemiennego.                                                          gdzie:Y - admitancja, wyrażona w simensach Z - impedancja, wyrażona w omach Admitancja jest liczbą zespoloną, jej część rzeczywista to konduktancja (G), a urojona to susceptancja (B):                                              opór całkowity (ozn. Z) to wielkość opisujaca elementy w obwodach prądu przemiennego. Impedancja jest rozszerzeniem pojęcia rezystancja z obwodów elektrycznych prądu stałego, umożliwia rozszerzenie prawa Ohma na obwody prądu przemiennego.

54 Przypomnienie podstawowych praw elektrotechnikiKonwencja (UMOWA) biegunowości napięć i prądów A C B D Prąd WCHODZĄCY DO ELEMENTU (węzła) jest DODATNI Prąd WYCHODZĄCY Z ELEMENTU (węzła) jest UJEMNY Pierwsza litera indeksu napięcia, zgodnie z umową wskazuje wyższy potencjał „Biegunowość” napięcia określa znak przy jego wartości, np.: oznacza, że różnica potencjałów między pkt. „G” a „H” wynosi 5V, a potencjał pkt. „H” jest wyższy.