1 Prueba de Friedman Vanessa Restrepo Viviana Sanchez Luisa ArroyaveMILTON FRIEDMAN
2 PRUEBAS PARA K VARIABLES RELACIONADASEn ese método se estudian las pruebas no paramétricas más utilizadas para comparar más de dos variables relacionadas. Las pruebas más utilizadas para comparar K variables relacionadas son: La prueba de Friedman. La prueba de Kendall. La prueba de Cochran. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
3 Prueba de Friedman En estadística la prueba de Friedman es una prueba no paramétrica desarrollado por el economista Milton Friedman. Esta prueba puede utilizarse en aquellas situaciones en las que se seleccionan n grupos de k elementos de forma que los elementos de cada grupo sean lo más parecidos posible entre sí, el método consiste en ordenar los datos por filas o bloques, reemplazándolos por su respectivo orden. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
4 Hipótesis H0: No existen diferencias entre los grupos.Ha: Existen diferencias entre los grupos. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
5 Para resolver el contraste de hipótesis anterior, Friedman propuso un estadístico que se distribuye como una Chi-cuadrado con K - 1 grados de libertad, siendo K el número de variables relacionadas; se calcula mediante la siguiente expresión. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
6 Estadístico de Prueba En la expresión anterior:X2r = estadístico calculado del análisis de varianza por rangos de Friedman. H = representa el número de elementos o de bloques (numero de hileras) K = el número de variables relacionadas ∑ Rc2 = es la suma de rangos por columnas al cuadrado. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
7 Pasos Hacer una tabla en la que las K variables, es decir, las K medidas estén en las columnas y los n elementos en las filas, de esta manera la tabla tendrá K columnas y n filas. A los valores de cada fila se les asigna un número del 1 a K, según el orden de magnitud de menor a mayor; a este número se le denomina rango. Se suman los respectivos rangos en función de las columnas. Aplicar la fórmula de análisis de varianza de doble entrada por rangos de Friedman. Comparar el valor de X2r de Friedman con tablas de valores críticos de Chi-cuadrada de Pearson. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
8 EJEMPLO Con objeto de estudiar la diferencia de concentración de un tóxico (mg/1000) en distintos órganos de peces, se extrae una muestra aleatoria de peces de un río y se estudia en cada uno de ellos la concentración del tóxico (mg/1000) en cerebro corazón y sangre. El objetivo del estudio es conocer si la concentración del tóxico en los tres órganos es igual o distinta. Los resultados obtenidos son los siguientes: n (H) = 12 peces K = 3 órganos (cerebro , corazón y sangre) Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
9 Hipótesis H0: No existen diferencias significativas en la concentración del tóxico en cerebro corazón y sangre. Ha: Existen diferencias significativas en la concentración del toxico en cerebro corazón y sangre. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
10 Primer Paso Cerebro Corazón Sangre 164 96 51 105 115 41 150 100 46 14575 79 139 88 52 144 64 70 97 98 101 146 99 55 153 91 39 138 94 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
11 Segundo Paso Cerebro Corazón Sangre 164 (3) 96 (2) 51(1) 105 (2)115 (3) 41 (1) 150 (3) 100 (2) 46 (1) 145 (3) 75 (1) 79 (2) 139 (3) 88 (2) 52 (1) 144 (3) 64 (1) 70 (2) 97 (2) 98 (2) 101(3) 146 (3) 99 (2) 55 (1) 153 (3) 91 (2) 39 (1) 138 (3) 94 (2) 105 (3) Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
12 Tercer Paso Las sumas de rangos correspondientes a cada órgano, variable o columna son: R1 = R2 = R3 =14 Dividiendo las sumas de rangos anteriores por 12 se obtienen los rangos medios: R1 = 2, R2 =2, R3 =1,17 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
13 Cuarto Paso Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
14 Quinto Paso Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
15 Punto critico hallado para una distribución Chi-cuadrado con 2 grados de libertad es: 5.99 Valor hallado aplicando la formula: 15.17 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
16 Conclusión Como el valor obtenido es mucho mayor, hay pruebas estadísticas suficientes para rechazar la hipótesis nula y concluir que existen diferencias significativas en la concentración del toxico en cerebro corazón y sangre. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
17 La prueba de Friedman con SPSSVanessa Restrepo, Viviana Sanchez, Luisa Arroyave
18 En el menú análisis seleccione estadística no paramétrica, y en la lista de estas pruebas seleccione K muestras relacionadas, aparece la pantalla siguiente: Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
19 Una vez introducidos los datos las variables que se quieren contrastar Cerebro, Corazón y Sangre en este caso se pasan a la ventana «Contrastar variables»; Se marca en «Tipo de prueba» Friedman, pulsando Aceptar se obtienen los resultados siguientes: Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
20 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
21 En la primera tabla se muestran los rangos medios correspondientes a cada variable.En la segunda tabla se muestran el número de casos, el valor del estadístico de contraste, los grados de libertad y la significación estadística, que es aproximada P < 0,001. Las conclusiones son las mismas que se expusieron anteriormente. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
22 Ejercicio: La asociación de padres de un centro convoca sucesivamente cuatro reuniones dirigidas a los padres de alumnos de un mismo grupo o clase, en las que se abordaron respectivamente temas relacionados con el apoyo de la familia al estudio (Tema A), el juego y el tiempo libre de los niños (Tema B), la participación de los padres en el centro (Tema C) y la participación de los niños en programas de arte (Tema D). Si contamos los datos de asistencia a cada una de las cuatro reuniones para los padres de alumnos de 6 clases, ¿podemos afirmar que los cuatro temas atrajeron de modo distinto a los convocados? Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
23 TEMAS A B C D 1 2 3 7 4 5 C L A S E Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
24 Hipótesis H0: No existen diferencias significativas en la atracción generada en los convocados acerca de los cuatro temas. Ha: Existen diferencias significativas en la atracción generada en los convocados acerca de los cuatro temas. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
25 Solución TEMAS A B C D 1 (1) 2 (2) 3 (3) 7(4) 4 (3) 5 (4) 4 (4) C L AVanessa Restrepo, Viviana Sanchez, Luisa Arroyave
26 Sumamos los rangos de cada columna Rango1 = 11 Rango2 = 12 Rango3 =14Rangos medios R1= R2= R3= R4= 3.8 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
27 Calculamos la X2r de Friedman.Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
28 Punto critico hallado para una distribución Chi-cuadrado con 3 grados de libertad es: 7.81 Valor hallado aplicando la formula: 9 Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
29 Conclusión Como el valor obtenido es mayor, hay pruebas estadísticas suficientes para rechazar la hipótesis nula y concluir que los cuatro temas atrajeron de modo distinto a los convocados. Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave
30 GRACIAS… Vanessa Restrepo, Viviana Sanchez, Luisa Arroyave