Sesión 1.1 Presencial Concepto de ecuación CVA y CS

1 Sesión 1.1 Presencial Concepto de ecuación CVA y CS Ecu...
Author: Rubén Piñeiro Vega
0 downloads 2 Views

1 Sesión 1.1 Presencial Concepto de ecuación CVA y CS Ecuación cuadrática Ecuación con valor absoluto e irracional

2 Introducción a ecuacionesUna ventana Normanda, tiene la forma de un cuadrado coronado con un semicírculo, como se ilustra en la figura. Determine el ancho de la ventana, si el área total del cuadrado y del semicírculo es 200 pies2. x

3 Problemas de modelación. Etapas.Analice la información interna y externa. Definir la incógnita. Plantee una ecuación. Resuelva la ecuación (CVA: pregunte qué valores puede tomar su incógnita y CS). Analice el resultado. Termine con una respuesta completa.

4 Ecuación Ejemplos: 1. 𝑥 2 +4=5𝑥 2. 𝑥=3 3. 2𝑥−2 𝑥−1 =1Es un enunciado de igualdad entre dos expresiones E y F, es decir E = F. Ejemplos: 𝑥 2 +4=5𝑥 2. 𝑥=3 𝑥−2 𝑥−1 =1 𝑥 3𝑥+4 =2− 𝑥 3𝑥−4 𝑥+7 =− 𝑥 2 +5 𝑥 𝑥−1 =−1

5 CONJUNTO SOLUCION (CS)Definiciones CONJUNTO DE VALORES ADMISIBLES (CVA) Llamaremos conjunto de valores admisibles, al conjunto de números reales para el cual están DEFINIDAS las expresiones E y F. CONJUNTO SOLUCION (CS) Un valor de la variable que convierte la ecuación en un enunciado verdadero, se llama una solución o raíz de la ecuación. Al conjunto de toda las raíces se le llama CONJUNTO SOLUCION. ¿Qué significa entonces resolver una ecuación? Resolver una ecuación es hallar el conjunto solución.

6 Propiedad del factor ceroAB = 0 si y solo si A = 0 ó B = 0 (o ambos) 𝑥−3 𝑥+1 =0 ⇔ 𝑥−3=0 ∨ 𝑥+1=0 𝑦 𝑥

7 Ecuación cuadrática 𝑎 𝑥 2 +𝑏𝑥+𝑐=0 DefiniciónUna ecuación cuadrática es de la forma donde a, b y c son números reales y a ≠ 0. 𝑎 𝑥 2 +𝑏𝑥+𝑐=0 Ejemplos: Texto guía pág

8 Formas para resolver 𝑏 2 2 𝑎 𝑥 2 +𝑏𝑥+𝑐 ∆= 𝒃 𝟐 −𝟒𝒂𝒄1 2 Completamiento de cuadrados Para hacer de x2 + bx un cuadrado perfecto sume y reste: 𝑏 2 2 Fórmula Cuadrática ∆= 𝒃 𝟐 −𝟒𝒂𝒄 𝑥 1, 2 = −𝑏 ± 𝑏 2 −4𝑎𝑐 2𝑎

9 ∆ >0 ∆ =0 ∆ <0 Determinación de cantidad de raíces DiscriminanteRaíces Reales Ejemplo x1, x2 C.S.=x1 , x2 2x2 -10x + 12 = 0 = 4 > 0 x1= -3 , x2 = -2 x1 C.S.=x1 2x2 – 12x + 18 = 0 = 0 x1 = x2 = 3 No hay C.S. =  x2 + x + 4 = 0 = -15 < 0 ∆ >0 ∆ =0 ∆ <0

10 Relaciones fundamentalesSi a es un número real solución de la ecuación f(x) = 0, entonces los tres enunciados siguientes son equivalentes respecto al número a. 1. El número a es una raíz (solución) de la ecuación, si y solo si f(a) = 0. 2. El número a es un cero de y = f(x). 3. El punto (a;0) es la intersección del eje x con la gráfica de y = f(x).

11 Ecuación con valor absolutoSea a un número real, el valor absoluto de a, denotado por │a│, se define por: Propiedades: Sea E una expresión algebraica en x y sea a un número real (a ≥ 0): Si E(x)│= a entonces E(x) = a o E(x) = - a OBS: Si a = 0, │E(x)│= 0 si solo si E(x)=0 11

12 Ecuación irracional Resuelva las siguientes ecuaciones: 𝑎) 2𝑥+1 +1=𝑥𝑎) 2𝑥+1 +1=𝑥 𝑏) 𝑥− 9−3𝑥 =0 𝑐) 5−𝑥 +1=𝑥−2 𝑑) 2𝑥+ 𝑥+1 =8 Resolver gráficamente 12

13 Bibliografía Los alumnos deben revisar las páginas 47 – 51 y 83 del libro texto. Ejercicios (R4): Pág 13

14 ¿Cómo hallar el conjunto solución de una ecuación?ClassPad ¿Cómo hallar el conjunto solución de una ecuación? 1° Seleccione Opción Acción 2° Seleccione Ecuación 3° Seleccione Solve

15 Aparece en pantalla

16 Se obtiene el conjunto soluciónClassPad Luego, se escribe la ecuación: 2x4 + x3 – 8x2 – x + 6 = 0 Se obtiene el conjunto solución C.S. ={-2; -1; 1; 3/2}

17 Se obtiene el conjunto soluciónClassPad 2) Resolver la ecuación: x1/6+2x1/3=10 Se obtiene el conjunto solución C.S. ={64}