1
2 Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe: http://www.ch.pw.edu.pl/~hof/term_ttc.htm http://www.ch.pw.edu.pl/~hof/term_ttc.htm Konsultacje środa14:15-15:00
3 Kolokwia 2015/16 czwartek, 18:15-20:00, AZ i 350A 1/126.11 1/23.12 2/114.01 2/221.01
4 Struktura przedmiotu Podstawy termodynamiki klasycznej Podstawy chemii kwantowej (prof. A. Sporzyński) Podstawy termodynamiki procesów nierównowagowych Termodynamika : Chemia kwantowa
5 Regulamin (1) 1. Ocena za przedmiot jest zintegrowana i jest średnią arytmetyczną wyniku z ćwiczeń i oceny za egzamin. Liczbę punktów za przedmiot uzyskuje się sumując punkty procentowe za obie części i dzieląc sumę przez dwa. 2. Studenci, którzy nie zaliczyli przedmiotu w poprzednich latach, mogą poprawiać tylko egzamin albo tylko ćwiczenia – wtedy do oceny zintegrowanej wlicza im się uzyskany wcześniej wynik z egzaminu albo ćwiczeń. 3. Egzamin składa ze 105-minutowej części pisemnej, na którą składa się materiał z termodynamiki i podstaw mechaniki kwantowej, ocenianych w proporcjach 85:15. W sytuacjach wątpliwych przewiduje się egzamin ustny (zwykle następnego dnia). 4. Przewiduje się 4 terminy egzaminów (dwa w sesji zimowej, jeden w letniej i jeden w sesji jesiennej).
6 Regulamin (2) 5. W zależności od liczby punktów za cały przedmiot (egzamin + ćwiczenia) wynikają następujące konsekwencje: P > 50% - przedmiot zaliczony ok. 48 % < P < 50 % - egzamin ustny P < ok. 48% - brak zaliczenia 6. Jedyne materiały dopuszczalne na egzaminie pisemnym to: - kalkulator, - przyrząd do pisania. 7. Konsekwencją posiadania przy sobie w trakcie egzaminu innych materiałów, a szczególnie ściąg i podobnych pomocy, jest niezaliczenie egzaminu. Posiadania, a niekoniecznie korzystania!
7 Regulamin (3) 8. Na egzaminie pisemnym należy zwięźle odpowiedzieć na 8 pytań i rozwiązać 2 zadania. Pytania wybierane są z zestawu około 80 pytań, które dostępne są w internecie. Pytania pogrubione, tak zwane NIEZAPOMINAJKI, oceniane są dwa razy wyżej niż pytania pozostałe.zestawu około 80 pytań 9. Egzamin ustny traktowany jest jako poprawa egzaminu pisemnego, jakkolwiek mogą pojawić się pytania dodatkowe, szczególnie niezapominajki, które nie zostały zaliczone podczas egzaminu pisemnego. Na egzaminie ustnym można również poprawiać ocenę zaliczającą. W tym przypadku pytania mogą wykraczać poza listę pytań egzaminacyjnych. listę pytań egzaminacyjnych
8 Egzamin – przykładowe pytania 4. I Zasada Termodynamiki; definicja entalpii; I Zasada wyrażona poprzez entalpię. 9. Podać definicję standardowej entalpii tworzenia (spalania) acetonu [*] (CH 3 COCH 3(c) ) w temperaturze T; Obliczyć standardową entalpię reakcji: CH 3 OH (g) + CO (g) → CH 3 COOH (g) [*] wykorzystując standardowe entalpie tworzenia (spalania). 51. Określić jakościowo jak zmiana: a) temperatury; b) ciśnienia; c) gazu obojętnego; wpływa na położenie stanu równowagi chemicznej podanej reakcji: C 2 H 4(g) + H 2(g) = C 2 H 6(g) [*] mając podane wartości standardowych entalpii tworzenia reagentów.
9 Egzamin – przykładowe zadanie Prężności par nasyconych nad czystymi składnikami A i B, mogą być wyrażone w postaci następującej funkcji temperatury: gdzie i = A, B w interesującym nas przedziale temperatur. Mieszanina ciekła A + B jest praktycznie roztworem doskonałym. Podać i naszkicować orientacyjnie równania izobary (dla p = p 0 ) równowagi ciecz-para dla tego układu czyli temperatury wrzenia w funkcji składu fazy ciekłej i składu fazy gazowej.
10 Literatura Chemia fizyczna, praca zbiorowa, PWN, Warszawa 1980. P.W. Atkins, Chemia fizyczna, PWN, Warszawa 2001. H. Buchowski, W. Ufnalski, Podstawy termodynamiki, WNT, Warszawa 1994. H. Buchowski, W. Ufnalski, Gazy, ciecze, płyny, WNT, Warszawa 1994. H. Buchowski, W. Ufnalski, Roztwory, WNT, Warszawa 1995. H. Buchowski, W. Ufnalski, Równowagi chemiczne. WNT, Warszawa 1995 http://www.ch.pw.edu.pl/~hof/term_ttc.htm
11 Literatura K. Gumiński, Termodynamika, PWN, Warszawa 1974. K. Pigoń, K. Ruziewicz, Chemia fizyczna. Podstawy fenomenologiczne. PWN, Warszawa, 2005. K. Zalewski, Wykłady z mechaniki i termodynamiki statystycznej dla chemików, PWN, Warszawa 1982. K. Zalewski, Wykłady z termodynamiki fenomenologicznej i statystycznej, PWN, Warszawa 1978.
12 Czym zajmuje się termodynamika?
13 Termodynamika zajmuje się opisem (mechanicznym) układów makroskopowych, złożonych z olbrzymiej liczby elementów składowych (cząsteczek).
14 Jak znaleźć stan mechaniczny układu cząsteczek – równania Newtona Układ 3 równań różniczkowych drugiego rzędu Do rozwiązania niezbędne jest 6 warunków brzegowych Dla N cząsteczek – 6N parametrów! Ale czy rzeczywiście taka liczba parametrów jest niezbędna ? Parametry makroskopowe są uśrednionymi albo zsumowanymi parametrami cząsteczkowymi
15 Podsumowanie zadań termodynamiki Cel - znalezienie (i wykorzystywanie w celach praktycznych) związków pomiędzy parametrami makroskopowymi dla pewnych stanów oraz procesów. Dwie drogi: Termodynamika statystyczna – wyprowadza związki na podstawie właściwości cząsteczkowych. Termodynamika klasyczna (fenomenologiczna) – opiera się na czterech aksjomatach zwanych Zasadami Termodynamiki i nie odwołuje się do cząsteczkowej struktury materii.
16 Parametry termodynamiczne opisujące układ
17 Parametry termodynamiczne V, n 1, n 2, …., p, T parametry intensywne: p, T - ciśnienie, temperatura parametry ekstensywne: V, n 1, n 2, …. – objętość, ilości składników (liczby moli) p, T, V, n 1, n 2, …. T
18 Funkcje (parametry) stanu – co wynika z tego prostego stwierdzenia? Jeśli F jest funkcją stanu, to jest ona bezpośrednio całkowalna dF jest różniczką zupełną, tzn. dla funkcji F(x 1,x 2,...,x n ) Kolejność różniczkowania drugich mieszanych pochodnych cząstkowych jest dowolna, czyli spełnione są relacje Maxwella dla każdej pary i,j
19 otoczenie układ
20 układ izolowany osłona przepływ masy układ zamknięty (nie) układ otwarty (tak) masa, energia
21 Osłony osłona adiabatyczna - taka, że tylko procesy w otoczeniu związane z wykonywaniem pracy wpływają na stan układu → proces adiabatyczny. osłona diatermiczna (termicznie przewodząca) - taka, że dla trzech układów (A, B, C) ograniczonych taką osłoną, spełniona jest następująca relacja A jest w równowadze z B B w równowadze z C ABC A jest w równowadze z C C’
22 „Przechodniość” w życiu Kuba Lukrecja Ignacy
23 Zerowa Zasada Termodynamiki Jest równoważna postulatowi istnienia osłony diatermicznej Z warunku równowagi i własności osłony diatermicznej wynikają związki pomiędzy parametrami układów będących w stanie równowagi Co jest możliwe tylko wtedy, kiedy istnieje wspólny parametr Jest to definicja temperatury (empirycznej) T
24 Proces odwracalny (kwazystatyczny) p pzpz Proces odwracalny (kwazystatyczny) - taki, że nieskończenie mała zmiana wartości parametrów wystarczy do odwrócenia jego kierunku. p - dp p + dp Zmiana ciśnienia o 2·dp prowadzi do odwrócenia procesu.
25 Zasada Duhema (na razie empiryczna) W jednofazowym układzie zamkniętym (n=const) dwa parametry wystarczą do pełnego opisu stanu układu. f(p,V, T) = 0 - równanie stanu Najprostsze równanie stanu: równanie stanu gazu doskonałego: pV = nRT
26 Praca objętościowa p V pzpz dl czy
27 Praca objętościowa – jaki znak? Patrzymy na Świat z perspektywy Układu Praca wykonana przez układ nad otoczeniem układ traci energię praca powinna być ujemna dV > 0 dw > 0
28 Praca objętościowa p pzpz pzpz 0 dw0 szybkośćmaks Praca odwracalna jest minimalna (maksymalna co do bezwzględnej wartości) p 0 proces odwracalny min
29 Inne rodzaje pracy
30 Podsumowanie i wnioski Termodynamika zajmuje się układami makroskopowymi (złożonymi z olbrzymiej liczby cząsteczek). Opisuje je za pomocą parametrów (funkcji) stanu. Dwa sposoby znajdywania związków pomiędzy parametrami – termodynamika klasyczna i statystyczna. Temperatura zdefiniowana poprzez Zerową Zasadę Termodynamiki. Praca objętościowa jako konsekwencja przyjęcia parametru V.
31 Czy praca objętościowa jest funkcją stanu? W ogólnym przypadku nie (!), bo dw = - p z dV A dla przemiany odwracalnej? dw = - pdV
32 Czy praca objętościowa jest funkcją stanu? p V A B Praca objętościowa nie jest funkcją stanu także dla przemiany odwracalnej! T A =T B
33 Podsumowanie i wnioski Praca objętościowa nie jest funkcją stanu, w związku z czym nie jest spełniona (!) fundamentalna równość: Jedyna możliwość „uratowania” zasady zachowania energii to przyjęcie istnienia jeszcze innego sposobu przekazywania energii (Q). Wtedy byłoby
34 I ZASADA TERMODYNAMIKI Postuluje się istnienie funkcji stanu, zwanej energią wewnętrzną (U), która ma następujące właściwości: 1. Jest funkcją ekstensywną 2. Jej różniczka zupełna równa się różniczkowej pracy w przemianie adiabatycznej w układzie zamkniętym dU = (dw) ad
35 Ciepło Bilans energii definicja ciepła
36 Entalpia Bilans entalpii Jest funkcją ekstensywną!
37 Ciepło jako funkcja stanu Prawo Hessa Germain Hess (1802-1850)
38 Jak mierzymy efekt cieplny? Pojemność cieplna pod stałym ciśnieniem Pojemność cieplna w stałej objętości
39 Termochemia
40 Standardowa entalpia reakcji (ΔH o ) N 2 + 3H 2 → 2NH 3 Niejednoznaczność zapisu! Konieczność ścisłego zdefiniowania stanu początkowego i końcowego!
41 Standardowa entalpia reakcji (ΔH o ) – reakcja standardowa Reakcja biegnie do końca. Bierze w niej udział liczba moli reagentów wynikająca z równania stechiometrycznego. Temperatura oraz ciśnienie w stanie początkowym (substraty) i końcowym (produkty) są takie same. Reagenty występują w stanach standardowych.
42 Standardowa entalpia reakcji (ΔH o ) – stan standardowy Ciśnienie p° = 1 bar, gazy (też mieszaniny) - czyste gazy doskonałe, substancje skondensowane (czyste lub w roztworze, poza jonami) - czyste składniki, jony w roztworze - roztwór doskonały o stężeniu 1 mol/ 1000 g rozpuszczalnika.
43 Standardowa entalpia reakcji (ΔH o ) – problem wyznaczenia N 2 + 3H 2 → 2NH 3 ΔH o = suma entalpii produktów – suma entalpii substratów ? Jest to niewykonalne, ponieważ nie wyznaczymy H reagentów! Możemy jedynie posługiwać się zmianami entalpii. Zadanie: zdefiniować jakąś podstawową, ogólną reakcję, której standardowe entalpie stanowiłyby podstawę obliczania standardowych entalpii dowolnej reakcji.
44 Standardowa entalpia tworzenia (ΔH f o ) Jest to standardowa entalpia następującej reakcji: pierwiastki w stanach termodynamicznie trwałych 1 mol substancji dla C 2 H 5 OH (c) (T = 300 K)? dla 2C (grafit) + 3H 2(g) + 1/2O 2(g) → C 2 H 5 OH (c)
45 Uogólnione współczynniki stechiometryczne N 2 + 3H 2 → 2NH 3 ΔH o = suma entalpii produktów – suma entalpii substratów Współczynniki stechiometryczne? 1, 3, 2? Nie! -1, -3, +2
46 Standardowa entalpia z entalpii tworzenia pierwiastki w stanach termodynamicznie trwałych w ilościach wynikających ze stechiometrii
47
48 Standardowa entalpia spalania (ΔH sp o ) Jest to standardowa entalpia następującej reakcji: 1 mol związku + nO 2(g) mCO 2(g) + kH 2 O
49 Zależność ∆H od temperatury – prawo Kirchhoffa Gustav Kirchhoff (1824-1887) Związki między parametrami zdefiniowane poprzez pochodne!
50 Standardowa energia wewnętrzna (ΔU o ) O różnicy pomiędzy standardową entalpią a energią wewnętrzną decyduje zmiana objętości.
51 Standardowa energia wewnętrzna (ΔU o ) - przykład N 2(g) + 3H 2(g) → 2NH 3(g) N 2(g) + 3H 2(g) → 2NH 3(c)
52 Średnia termochemiczna energia wiązań E XY ….X-Y… (g) X (g) + Y (g) CH 4(g) + 4Cl 2(g) → CCl 4(c) + 4HCl (g) Przykład:
53 Bilanse reaktorów chemicznych reaktor okresowyreaktor przepływowy
54 Praca techniczna różniczkowa praca techniczna p p+dp
55 Bilanse reaktorów chemicznych reaktor okresowy zwykle V = const „minus” praca techniczna reaktor przepływowy zwykle V = const bilans entalpii dla V = const
56 Jeszcze parę słów o temperaturze Czego temperaturę mierzymy? Mierzymy temperaturę termometru! Musi istnieć wspólny parametr. Wtedy temperatura termometru jest równa temperaturze układu. Zapewnia nam to istnienie osłony diatermicznej, co gwarantuje Zerowa Zasada Termodynamiki.
57 Jak zmierzyć temperaturę? Jeśli nie bezpośrednio, to jak? Równanie stanu F(T, p, V, n = const) = 0. Stąd Ścisłą zależność daje nam pochodna: Ale pochodnej tej nie znamy! Co robić? Najprostsze rozwiązanie: Potrzebne dwa punkty do kalibracji!
58 Jeszcze parę słów o temperaturze Wady „takiej” temperatury: arbitralność definicji, uzależnienie od cieczy, termometrycznej. Anders Celsius (1701-1744)
59 Jeszcze parę słów o temperaturze pV t/ o C t =-273,15 Różne gazy, p 0, m = const
60 Jeszcze parę słów o temperaturze pV t/ o C t =-273,15 Różne gazy, p 0, V 0 (T 0,p 0 ) = const skala Kelvina William Thomson (1824-1907)
61 Jeszcze parę słów o temperaturze Termometr gazowy i temperatura empiryczna
62 Dlaczego pewne procesy zachodzą, a inne nie? W świecie, w którym żyjemy zachodzą tylko niektóre procesy, które nie są sprzeczne z I Zasadą. I Zasada nie wystarczy! Te procesy, które zachodzą, są nieodwracalne.
63 Cały nasz Świat tworzą procesy nieodwracalne …
64
65
66
67
68
69 Dlaczego ???? A może „zasada minimalizacji energii”? dU ≤ 0 ? dU = -p z dV + dQ ≤ 0 ? dla V = const dQ ≤ 0 ? w warunkach izochorycznych możliwe tylko procesy egzotermiczne ≤ 0 ?
70 Eksperyment z kartami Jakie jest prawdopodobieństwo powrotu do pierwotnego, uporządkowanego rozkładu poprzez tasowanie ? Liczba wszystkich konfiguracji (kolejności kart) wynosi 52! Ω = 52! Jeśli wszystkie konfiguracje są jednakowo prawdopodobne, to prawdopodobieństwo zaistnienia jednej z nich wynosi
71 II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1
72 Swobodna ekspansja gazu – przykład procesu nieodwracalnego 2
73 3
74 4
75 5
76 6
77 7
78 8
79 8
80 7
81 6
82 5
83 4
84 3
85 2
86 II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1
87 Swobodna ekspansja gazu – przykład procesu nieodwracalnego 8 1 2 3 4 5 67
88 Swobodna ekspansja gazu Każdej cząsteczce możemy przydzielić jeden z dwóch stanów – L i P. Cząsteczka w każdym z nich może się znaleźć z jednakowym prawdopodobieństwem. Jeśli przyjąć, że zmiana konfiguracji odbywa się w czasie Plancka, tj. = 10 -43 s, przejście po wszystkich konfiguracjach wymagałoby czasu rzędu 2 N lat! To znacznie dłużej niż istnieje (i będzie istniał) Wszechświat! Liczba wszystkich możliwych stanów wynosi: 2∙2∙2∙2∙… = 2 N. Przy założeniu, że wszystkie lokalizacje każdej cząsteczki są jednakowo prawdopodobne, prawdopodobieństwo powrotu do stanu początkowego wynosi
89 Entropia w ujęciu statystycznym formułujemy zasadę wzrostu entropii: Dla każdego spontanicznego procesu zachodzącego w układzie izolowanym, tj. U, V, N = const, entropia musi rosnąć, osiągając maksimum w stanie równowagi Jednemu stanowi makroskopowemu odpowiada olbrzymia liczba mikrostanów kwantowych Jeśli wszystkie stany są jednakowo osiągalne, to spontaniczny proces w układzie izolowanym biegnie od stanu 1 do stanu 2, jeśli Ω 1
90 Podsumowanie Znaczenie funkcji S = k ln Stanowi makroskopowemu odpowiada wielka liczba mikrostanów kwantowych. Proces nieodwracalny przebiega od stanu mniej prawdopodobnego (realizowanego przez mniejszą liczbę mikrostanów kwantowych) do stanu bardziej prawdopodobnego (realizowanego przez większą liczbę mikrostanów kwantowych). Stanowi równowagi odpowiada maksymalna liczba mikrostanów kwantowych. Równoważne sformułowanie posługuje się pojęciem entropii. Odpowiednia reguła, zwana zasadą wzrostu entropii brzmi: Dla (N,V,U=const, tj. dla układu izolowanego) możliwy jest tylko proces, któremu towarzyszy wzrost entropii, która osiąga maksimum w stanie równowagi.
91 Właściwości entropii Ponieważ dla układu złożonego, Ω = Ω 1 ∙ 2 - entropia jest funkcją ekstensywną S = kln Ω S = S 1 + S 2
92 Znaczenie pochodnej N 1,V 1 N 2,V 2 N i = const V i = const U 1 + U 2 = const Jaki będzie warunek równowagi względem przepływu energii pomiędzy 1 a 2 ? U 1 U 2 izolacja od otoczenia Zgodnie z zasadą wzrostu entropii, stan równowagi odpowiada maksimum entropii S = S 1 + S 2 Przyjmijmy, że parametrem niezależnym jest U 1, wtedy dU 1 + dU 2 = 0 dU 1 = - dU 2
93 Znaczenie pochodnej N 1,V 1 N 2,V 2 N i = const V i = const U 1 + U 2 = const W stanie równowagi U1U1 U2U2 izolacja od otoczenia Definicja temperatury termodynamicznej
94 Związek pomiędzy termodynamiką statystyczną a klasyczną Jeśli przyjmiemy, że k = R/N A stała Boltzmanna
95 Ciepło a entropia dU = dw + dQ dU = dw odw + dQ odw ciepło odwracalne – dQ odw jest maksymalne praca odwracalna - dw odw jest minimalna dQ odw ≥ dQTdS =
96 II zasada termodynamiki Postuluje się istnienie funkcji stanu zwanej entropią (S), która ma następujące właściwości Jest funkcją ekstensywną
97 Lokalny charakter II Zasady II Zasada nie ma charakteru uniwersalnego, stosuje się jedynie do układów: - makroskopowych, - w stanie równowagi, - ergodycznych. Z braku uniwersalności wynikają liczne nieporozumienia i błędne interpretacje (do dnia dzisiejszego !)
98 Rudolf Julius Emmanuel Clausius (1822-1888) Ludwig Eduard Boltzmann (1844-1906)
99 Wnioski z I i II zasady (1) dU = -pdV + TdS dU = dw + dQ = dw odw + dQ odw Wnioski: Istnienie związków pomiędzy parametrami (funkcjami) stanu. Uzasadnienie zasady Duhema (dwa parametry opisują różniczkę zupełną). Interpretacja temperatury i możliwe dalsze rozwinięcie dU.
100 Wnioski z I i II zasady(2) dU = -pdV + TdS To jest bilans energii: praca +ciepło ! „zwykła” siła ….bo mogą być inne formy przekazywania energii ! parametr intensywny – siła uogólniona deformacja parametru ekstensywnego
101 Wnioski z I i II Zasady (3) dla procesu odwracalnego dla każdego procesu U,V,(N) = const …. entropia rośnie i osiąga maksimum w stanie równowagi (zasada wzrostu entropii)
102 Wnioski z I i II Zasady (4) dla procesu odwracalnego dla każdego procesu S,V,(N) = const …. energia wewnętrzna maleje i osiąga minimum w stanie równowagi
103 Wnioski z I i II Zasady (5) Nie tylko entropia decyduje o naszym Świecie…. Parametrem rozstrzygającym o kierunku zachodzenia procesów mogą być różne funkcje (zwane potencjałami termodynamicznymi). Entropia jest potencjałem termodynamicznym dla U,V, N = const, podczas gdy dla warunków S,V,N = const, takim potencjałem jest energia wewnętrzna. Z praktycznego punktu widzenia najlepszy byłby potencjał „rządzący” procesami w warunkach dających się łatwo kontrolować (stałe parametry p, V, T)
104 Wnioski z I i II Zasady (6) – pozostałe potencjały dla procesu odwracalnego Entalpia: H = U + pV …. entalpia maleje i osiąga minimum w stanie równowagi dla każdego procesu S,p,(N) = const U = H - pV
105 Wnioski z I i II Zasady (7) – pozostałe potencjały dla procesu odwracalnego Energia swobodna: F = U - TS …. energia swobodna maleje i osiąga minimum w stanie równowagi dla każdego procesu T,V,(N) = const U = F + TS
106 Wnioski z I i II Zasady (8) – pozostałe potencjały dla procesu odwracalnego Entalpia swobodna: G = H – TS …. entalpia swobodna maleje i osiąga minimum w stanie równowagi dla każdego procesu T,p,(N) = const U = G – pV + TS = U + pV - TS
107 Entalpia swobodna – najważniejszy potencjał termodynamiczny różniczka zupełna Entalpia swobodna (energia Gibbsa, funkcja Gibbsa) G = H – TS pochodne cząstkowe relacja Maxwella
108 Potencjały termodynamiczne – pochodne i różniczki Potencjał termod. różniczka zupełna pochodne cząstkowe relacje Maxwella EntropiadS = (1/T)dU + (p/T)dV ( S/ U) V = 1/T ( S/ V) U = p/T Energia wewnętrzna dU = TdS - pdV ( U/ S) V = T ( U/ V) S = -p ( T/ V) S = - ( p/ S) V EntalpiadH = TdS +Vdp ( H/ S) p = T ( H/ p) S = V ( T/ p) S = ( V/ S) p Energia swobodna dF = -SdT - pdV ( F/ T) V = -S ( F/ V) T = -p ( S/ V) T = ( p/ T) V Entalpia swobodna dG = -SdT +Vdp ( G/ T) p = -S ( G/ p) T = V ( S/ p) T = - ( V/ T) p
109 Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF) T,V ≤ 0 G = H - TST, p(dG) T,p ≤ 0