Wykład 5 Charakterystyki czasowe obiektów regulacji

1 Wykład 5 Charakterystyki czasowe obiektów regulacjiTeor...
Author: Frydryk Lenkiewicz
0 downloads 3 Views

1 Wykład 5 Charakterystyki czasowe obiektów regulacjiTeoria sterowania Wykład 5 Charakterystyki czasowe obiektów regulacji 1. Odpowiedź impulsowa (ang. impulse response) 2. Odpowiedź skokowa (ang. step response)

2 kt Transformaty Laplace’a niektórych funkcji 1 Funkcja f(t)Transformata F(s) 1 1(t) kt

3

4

5

6 Odpowiedź impulsowa g(t) (odpowiedź na impuls Diraca)u(t) = δ(t) y(t) = g(t) Obiekt regulacji

7 Odpowiedź skokowa h(t) (odpowiedź na skok jednostkowy)u(t) = 1(t) y(t) = h(t) Obiekt regulacji

8 Odpowiedzi impulsowe i skokowe obiektów regulacji1. Obiekt bezinercyjny Odpowiedź impulsowa Odpowiedź skokowa

9 Odpowiedź impulsowa Odpowiedź skokowa k(t) t k uwe(t) uwy(t) R1 R2

10 2. Obiekt inercyjny I rzęduOdpowiedź impulsowa t g T

11 Odpowiedź skokowa t k T h

12 Czwórnik RC jako przykład obiektu inercyjnego I rzęduuwe(t) uwy(t) i(t) R Równanie wejścia – wyjścia: Transmitancja operatorowa:

13 Transmitancja widmowa:Równanie stanu: zmienna stanu

14 Obiekt inercyjny drugiego rzęduRównanie wejścia – wyjścia: Transmitancja operatorowa:

15 Równania stanu: równania stanu Równanie wyjścia:

16 Podwójny czwórnik RC jako przykład obiektu inercyjnego II rzęduuwe(t) uwy(t) i(t) C2 R2 i1 i2 u1 Równanie wejścia – wyjścia: Na podstawie praw Kirchhoffa mamy Zatem: .

17 - stałe czasowe. .

18 Transmitancja operatorowa:Transmitancja widmowa:

19 Równania stanu: Zmienne stanu:

20 Inny sposób uzyskiwania równań stanuJako zmienne stanu wybieramy wielkości związane z magazynami energii:

21 3. Obiekt dwuinercyjny Odpowiedź impulsowa g t gm tm

22 odpowiedź skokowa t h k

23 Przykład obiektu dwuinercyjnegouwe(t) uwy(t) i1(t) R1 C1 i2(t) C2 R2 Wzmacniacz separujący Równanie wejścia – wyjścia: Transmitancja operatorowa: